

Charles Linder

charlielinder@gmail.com • (914) 481-7149 • charlie-linder.com • linkedin.com/in/charlielinder6354

Education

Duke University Durham, NC	Graduation: May 2026
B.S.E in Mechanical Engineering Minor in Economics	GPA: 3.82/4.00
<ul style="list-style-type: none">Relevant Coursework: Thermodynamics, Heat & Mass Transfer, Fluid Mechanics, Control Systems, Materials Science, Dynamics, Statics, Design I-IV Spring 2026: Senior Design, Compressible Fluid Flow	

Experience

Duke University Motorsports (Formula SAE) <i>Mechanical Engineer and Project Team Lead</i>	August 2022 - Present <i>Durham, NC</i>
<ul style="list-style-type: none">Designed electric shifter and clutch mechanism informed by FEA to reduce weight by 32% and shifting time by 80%, while collaborating with drivers to improve accessibility and ease of useOptimized exhaust manifold with engine and fluid simulations, increased power by 8%Applied machining skills to design for manufacturability and independently manufacture systemsOversaw and mentored team of five other students within powertrain subsystemFacilitated cross-functional collaboration to integrated powertrain components into larger assembly	
Merz Aesthetics – Ultherapy <i>Mechanical Engineering Intern</i>	May 2025 – Aug 2025 <i>Raleigh, NC</i>
<ul style="list-style-type: none">Developed reliability testing fixture for ultrasound therapy devices, iterated with 3D printed prototypes, and independently manufactured final assemblyDesigned manufacturing alignment fixture, reduced assembly time by 35% and tolerance by 50%Authored comprehensive documentation and SolidWorks CAD packages, facilitating technical communication and allowing future at-scale implementation of the two fixtures	
WSP USA <i>Mechanical Engineering Intern</i>	May 2024 – Aug 2024 <i>New York, NY</i>
<ul style="list-style-type: none">Utilized thermal load simulations to build HVAC equipment selection strategies, cut client's equipment costs by 23%, and modeled solution schematics in AutoCADMastered and deployed unfamiliar tools and new software to support design and project deliverables	
Duke University Mechanical Engineering <i>Teaching Assistant – Mechatronics and Control Systems (EGR224)</i>	Dec 2024 - Present <i>Durham, NC</i>
<ul style="list-style-type: none">Mentored students through laboratory projects using MATLAB, LabVIEW, and control theory	

Projects

Walkie²: Smart Trekking Pole	August 2025 – December 2025
<ul style="list-style-type: none">Designed a lightweight, visually refined product integrating a radio and flashlight without adding bulkCreated compact electronics mounts and UI hardware using GD&T to guarantee desired fit and feelBuilt, validated, and CNC machined a durable magnetic interchangeable tip systemCoordinated clear communication throughout to ensure smooth electromechanical integrationPresented at Duke's Product Design Showcase, highlighting features and pitching to potential users	
Wind Turbine for Industrial Exhaust	August 2023 – May 2024
<ul style="list-style-type: none">Developed a small-scale wind turbine for exhaust outlets capable of powering lighting fixturesCollaborated and closely communicated with a team of engineering, economics, and policy students to transform the prototype into an economically and environmentally viable product	

Skills

Software: SolidWorks CAD + FEA | CATIA | Fusion360 | Python | MATLAB | LabVIEW | Microsoft Office
Fabrication: 3D Printing, Rapid Prototyping, GD&T, CNC Machining, Turning, Milling, Laser cutting